レイアウトセクションの製作:蒸気機関車が活躍していた時代の機関区(5) -コントロールボードの製作と電気配線-

前回の記事で記載したように、私は30年ほど前にアナログ制御のZゲージレイアウトを製作した後は 3線式(Märklin)のDigital制御のHOゲージレイアウトを製作してきたため、線路敷設後の試運転時にも車両の走行性の確実な確認のためには配線、特に分岐器絶縁フログ部の極性を分岐器の切り替え方向に応じて切り替えることが必要ということを失念していました。そこで確実な試運転のために急遽コントロールボードを製作することにしたのですが、この時点ではアナログ制御時の運転方法について具体的な構想や設計をあまり真剣に考えていなかったというのが正直なところです。

レイアウトの台枠部分に設けたコントロールボード.

今回このレイアウトが完成したとしてもその時点での手持ちの日本型蒸機はアナログ制御の車両のみであり、しばらくの間はアナログ制御で運転します。現状では日本でデジタル制御が米国や欧州のような形で普及する見込みは全く立ちませんのでアナログ制御による運転方法も一時凌ぎではなく「真面目に」検討しなくてはなりません。また、現在手持ちの車両を将来も運転するためアナログ制御とデジタル制御を切り替え可能にするとともに最終的にはDCCに制御による自動運転にも対応できるようにしたいところです。実はこのレイアウトの構想時にはどちらかというといつ実現できるかわからないにもかかわらず頭の中ではDCC制御のことばかり考えており、そのために行うことは非選択式の分岐器を用いて一つのフィーダーでレイアウト全体に給電すること、自動運転に必要なフィードバックモジュールによる在線検知にS88プロトコルを使用する場合は検知にアナログ制御時の機関車留置用のギャップ(ブロック)を利用する(よってDCC制御による自動運転のためにに特別の加工は不要)という程度のことしか考えていませんでした。
レイアウトのコントロール方法は70年台のTMS誌には比較的高頻度で掲載されており、私もZゲージのレイアウトを製作した時に大いに参考にしたのですが、最近はまったくみかけません。今回も復習したのは50年以上まえの当時の記事です。レイアウトのコントロール方式には大きくブロックコントロール、キャブコントロール、デュアルキャブコントロールがありますが、方式の決定にあたってはまずこのレイアウトセクション上で同時に何台の車両を動かすかを決める必要がありますが、今回以下の理由によりレイアウト上で動かす車両は1台のみとしました。私は過去、ほぼ同一の線路配置でDCC制御(Märklin Dogotal)のレイアウトセクションを作成しましたが、このレイアウトはDCC制御ですので理論上は機関車を何台置いても個別に制御が可能です。私が製作したこのレイアウトセクションに接続したコマンドステーション(Central Station3)は、スロットルの数は2台ありますので実質的にレイアウト上で制御できる機関車の台数は2台となります。ただ、実際に運転してみるとこの規模のレイアウトセクションで一人で2台の機関車を制御するのは至難の技です。2台の機関車を制御しようとした場合、この線路配置では1台は機関庫側での機関車の転線、もう一台は整備線側での整備(給水、給砂、給炭、石炭柄の排出)と留置線への移動になります。ただこの制御を一人で行おうとすると作業が非常に煩雑で機関車の動きを鑑賞するどころではなくなります。それでも今回のレイアウトではコントローラーを2台接続できるようにしておくこともできますが、上記の経験からそれも不要と考え、このレイアウトで一度に制御できる車両の数は1台としました。そうするとキャブは1台になりますのでコントロール方式は必然的にブロックコントロール方式となります。ギャップについては今回のレイアウトは非選択式の分岐器を使用していますのでショート防止のためのギャップは不要で常時通電するブロックへのフィーダーは1箇所でOKですす。そうすると次の要検討項目は絶縁されているフログへの給電となります。当初、この極性切り替えには当初PECOやの極性切り替えスイッチ(PL-25)を使用する予定でした。ただ、どういうわけかドイツの模型店ではこのスイッチが品切れで今回は入手不可能でした。このスイッチはポイントマシンのアクチュエータで動作するスライドスイッチで、ポイントマシンの分機器の反対側に装着する構造です(そのためにポイントマシンのアクチュエータは分岐器の逆側のソレノイドの下部に突出しています)。そのため比較的簡単に後からでも追加することが可能ですし、入手不能の場合は自作も可能ではないかと考え、検討を先送りしていました。しかし、コントロールボードを製作するためにはこの切り替え方法をこの段階で決定しなければなりません。今回使用したPECO製のポイントマシンの動作力は比較的強力ですので自動切り替えスイッチは燐青銅線やバネ等で比較的簡単に自作できそうです。ただ考えてみるとフログの極性を自動的に切り替える必要があるのは自動運転の場合だけで、自動運転を行わない場合はDCC制御での運転でも経路(分岐器の切り替え)は手動で行います。このため現時点ではフログ極性の自動切り替えは行わず、より信頼性が高い手動切り替えとしました。そしてその方法は、ポイントマシンの切り替えには両側モメンタリーのトグルスイッチを設け、フログの極性の切り替えはその近傍に設けた一般的なトグルスイッチで行うこととしました。そしてこれらのスイッチをコントロールボードの路線図上に設けることにより、分岐器切り替え時にはこの2個のスイッチの操作を連続して行ないます。この方式では切替作は2アクションとなりますがこの方法ではフログ極性の切り替えスイッチで分岐器の分岐方向を示すこともできます。コントロールボードは台枠の一部を切り欠いて設置しますが、上下の幅が狭いため、一つの経路頭上に分岐器切り替えスイッチとブロックへの給電スイッチは別の経路頭上の設けることとしました。そのほか、コントローラーは内蔵しませんので接続用のコネクタには手持ちのマイクコネクタを使用し、ポイントマシンへの給電用と照明等への給電用にはACアダプタをが接続できるDCジャックを設置しました。また、照明との給電をON /OFFできるトグルスイッチを設けてあります。照明用の電源は9VのACアダプタ、ポイントマシンの電源は12VのACアダプタを使用することとしました。

パネルの全体写真. 左側に分岐器切り替えスイッチ, 右側にブロック切り替えスイッチを配置. パワーパックの接続コネクタは手持ちのマイクコネクタ(7P)を使用していますが実際に使用しているのは2端子です.

コントロールパネル上で分岐器制御スイッチは路線図の分岐部に分岐方向切り替えスイッチ、その下流にフログ極性切り替えスイッチを設け、分岐器切り替え時にはまず分岐方向切り替えスイッチを切り替え方向に倒した後、フログ極性切り替えスイッチを動方向に倒してフログ極性を切り替えます。

この方法では分岐器の分岐方向をを切り替える際、2個のスイッチの操作が必要になります。私が以前製作したZゲージのレイアウトでも分岐器の切り替えは今回のレイアウトと同様、両側モメンタリーのトグルスイッチを使用していました。Zゲージの分岐器(Märklin製)は非選択式ですが構造上フログ部分に無電区間は殆んどなく、フログの極性切り替えは不要でったため、今回切り替え時に二つのスイッチを操作することは煩わしいのではと感じたのですが、実際に製作して操作してみると切替時は一連の操作になりますのでそれほど煩雑ではなく、またポイントの開通方向が目視でわかるということは意外と有益であることがわかりました。上記のZゲージ用分岐器やMärklinをはじめとした欧州製の分岐器にはスプリングポイント機能があり、分岐器の分岐側からは分岐器の開通方向に関わらず車両の侵入が可能ですが、今回使用したPECO製の分岐器はポイントレール側にロック機構があるためスプリングポイント機能がありませんので、車両を分岐側から分岐器に侵入する際も分岐器が侵入する分岐側に切り替わっていることの確認が必要です。これは分岐器を目視でチェックすればわかるのですが、運転する位置によっては建物等に隠れて開通方向が見にくい場合もありますので分岐機の開通方向がわかる今回の方式は操作は面倒ですが意外と便利であることがわかりました。
コントロールパネルの製作はまず2㎜厚のPET板より本体を作り、Letra Line Tape 製作した路線図ので所定位置に使用するパーツに応じた取り付け穴を開けてパーツを固定することにより行いました。Letra Line Tapeは30年近く前にZゲージレイアウトのコントロールパネルの路線図作成用に購入したものですが、今回問題なく使用できました。余談ですが、今回使用したトグルスイッチは秋葉原のパーツ店で1個¥100程度で入手できます。約30年前、Zゲージのレイアウトを製作した際はこの種のトグルスイッチは1個¥200-¥300であったような記憶があります。この種の部品は中国生産になった影響かもわかりませんが所詮模型用で信頼性はあまり問わないと割り切ればこの手の部品は当時よりかなり安価に入手できます。

パネルはパーツを取り付けたら台枠を切り欠いた取り付け部に固定して配線を開始します。配線にあたってはコントロールボードの近くに電源分配用の基盤を設け、そこからレイアウト各部に給電するようにしました。

コントロールボード近くに配置した配線用の基盤

基板はフィーダーN /フィーダーS/12V+/12V-/9V+/9V-の電源区画を設け、その区画ごとに各ホールを繋ぐ鈴メッキ線を半田付けし、さらに9V+の区画からはLED点灯用の1.5KΩの抵抗を介した端子(ホール)を設けました。そしてコントロールパネルのパワーパックとDCジャックからの電源をこの基板の各区画に接続し、そこからレイアウト各部に各部に配線していきます。なお、車両留置用のブロックからの配線は一方をこの基板に接続し、もう一方はコントロールパネルのブロックへの電源供給スイッチに直接接続してあります。レイアウトの各所からくるリード線は接続する電源区画のホールに半田付けしますが、その際、ホール上にあるスズメッキ線とともにハンダ付けけすることにより各電源と接続します。今まで製作してきたレイアウトでは端子台を使用する方法(Zゲージレイアウト・外国型機関区レイアウトセクション)、基板上に取り付けたターミナルブロックに取り付ける方法(自動運転を前提としたレイアウト)を採用してきましたが、配線は一度配線したら煩雑に取り外しすることはないので部品の削減(コストダウン)も兼ねてこのようなハンダ付けによる方法を採用しました。余談ですが、私が中学生の頃はこのようなスズメッキ線やリード線を使用したはんだ付け作業を学校の技術家庭科の授業でやった記憶がありますが、今はどうなのでしょうか。なお、コントロールボードのスイッチ周辺のような狭い範囲の配線には取り扱い製の面からスズメッキ線やビニール被覆の単線(捻り線ではない)を使用した方が簡単です。

配線用基板のアップ. 各電圧と極性のブロックを写真の縦方向に配置してあります. 各部からの配線は基板の各ホール部分にスズメッキ線とともにハンダ付けします.
基板には照明の一部にLEDを使用するため、9V+を供給するブロックに制限抵抗を介した端子を設けました.
各部からの配線は基板上の所定の電源区画にハンダ付けします.
レイアウトには電源供給用のBUS LINEは設けずに個々のブロックのコモン側の配線やポイントマシンへの配線は全て基板から配線しています。

なお、今回の車両留置用のブロックは両側のレールを絶縁して敷設し、片方のレール(Nフィーダー)からの配線をこの基板上でコモン化してあります。今回のレイアウトセクションはエンドレスを持ちませんのでどちら側のレールをNフィーダーとするかは一義的には決められませんので機関区側のフィーダーをNレールと定義してNコモンとして配線しました。配線が終了し、コントロールボードが完成したら試運転を行います。試運転はこのレイアウト上での運転を想定した手持ちの車両の中で最も終電用車輪のホィールベースが小さい車両(DT19を装備した気動車)と固定軸距が最も長い車両(D51)を主体に行って問題ないことを確認しました。試運転が終了したらレール側面と枕木の塗装を行いますが、この作業の紹介は次回にしたいと思います。最後までお読みいただきありがとうございました。

レイアウトセクションの製作:蒸気機関車が活躍していた時代の機関区(4) -ベースボードの製作と線路の敷設-

前回までの記事で紹介したようにレイアウトの大まかな構想がまとまりましたので、いよいよレイアウトの台枠から製作を開始します。今回は機関区セクションで地面に凹凸はありませんので下図のように台枠の表面は9㎜厚のシナ合板を使用したフラットトップ方式として、30×12㎜の杉角材で周囲の枠を製作することにしました。シナ合板は450×900㎜サイズを購入し、3等分した上で手持ちの300×20㎜の部材を追加して所定の寸法(1370×300㎜)としています。また枠の四隅には枠に使用した30×12㎜の杉角材の残材取り付けて足としました、

台枠の概略図. 右側に線路敷設前にベースボードに加工が必要なアッシュピットと点検ピットがあります.

台枠を組み立てる前にまずベースボードの加工を行います。蒸気機関車の燃料は石炭ですので、他のエネルギー源を使用した車両と異なり定期的に機関車から石炭の燃え殻(石炭殻)を排出する必要があるため蒸気機関車が配置されている機関区には機関車の火室の下から石炭殻を排出したときにそれを一時的に貯めておくアッシュピットがレールの間に設けられています。そのためベースボードには線路を取り付ける前にこの部分に角穴を開けておく必要があります。また機関庫には下回り点検用のピットが設けられていますが、こちらも構造的にはアッシュピットと同一であるためこちらもアッシュピットと同様の加工が必要です。今回、ベース板は3分割されており、組立前であれば角穴は糸鋸で開けることが可能ですのでこれらの部分はベース板を枠に取り付ける前にに加工しました。その手順は下の写真に示すように、所定の形状の角穴を糸鋸で開けて断面を仕上げた後、内側に壁となる1㎜厚のイラストボードを接着してパテで隙間を埋め、表面を平滑に仕上げています。

ピットはベースボードに角穴を開け, イラストボードで作成した壁面を取り付けます
パテで隙間を埋めて週を仕上げます. この後イラストボードで作成した底板を取り付けてピットの完成です.

今回使用するPECO製の分機器はポイントマシンを分岐器に直接取り付けることが可能で、その場合にはベース板の所定位置に角穴を開けることが必要ですが、ポイントマシンを分岐器の直接取り付けずにベース板裏面に取り付けることのできるアダプタ(PL-9:mounting Plate)が発売されていますので、今回はそのアダプタを使用してポイントマシンはベース板に取り付けることとしました。なお、PL-9を使用してポイントマシンをベース板裏面に取り付ける場合にはポイントマシンはPL-10Eという製品を使用します。このポイントマシンは分岐器に直接取り付けるタイプに比較し、アクチュエータであるピアノ線の長さが長くなっています。

ポイントマシン(PL-10E)にMounting Plate PL-9)を取り付けた状態

このアダプタを使用する場合は角穴は不要で所定位置に10㎜の丸穴を開ければよいので、この穴はベースボードの組み立て完了に開けることとしました。この穴あけには木工用ドリルを使用します。

ベースボードの組み立てが完了したら線路を敷設する作業を開始します。最初に分岐器の位置を決めて取り付けます。前述にように今回分岐器は英国PECO社製の6番ポイントを使用します。PECO製の分岐器は国内の模型店でも入手できますが、私は海外(ドイツ)からの個人輸入で入手しました、海外の価格は昨今の円安の状況でも国内で入手するより¥1,000程度安いのですが、送料と国内消費税を加えると国内とほぼ同等の価格になります。ただ、今回はベースの裏面に取り付けに対応したポイントマシンや裏面取付用のMouting Plate等、国内模型店ではすぐには入手困難な部品があったことから海外手配としました。今回は価格的なメリットは殆んどありませんでしたが比較的大きなレイアウトを製作する場合等には多数の分岐器が必要となる場合は分機器1台あたりの送料は減りますので価格だけ考えれば海外手配の方がお得ではないかと思われます。貨物の到着日数もほぼコロナ禍前に戻っているようです。ただ、海外手配の場合は輸送中の事故のリスクがありますのであくまで海外手配を行う場合は自己責任でお願いします。
線路が入手できたらまずは分岐器をベースに取り付けます。下の写真はPECO製の分岐器を裏面から見たものですが、PECO社のUnifrogタイプの分機器はFrog部分に給電用の導線が溶接されていますのでその導線をベース裏に通す穴が必要です。

PECO製の分岐器を裏面から見たところ. 絶縁されたフログ部分から導線が出ていますのでベースボードにこの導線を通す穴が必要です.

PECO製の分機器はポイントマシンを分岐器に直接取り付けることが可能で、その場合には取り付けるだけで分岐器とポイントマシンの位置関係は正しく位置決めされます。一方、裏面取り付け用のアダプタを使用する場合は分岐器とアダプタの位置調整は現物合わせによる調整が必要になります。ただ、マシンは強力でストロークもポイントレールの移動量に対して充分大きいためアダプターの取り付け位置の調整は比較的簡単です。ポイントマシンを取付後、枕木から飛び出しているアクチュエーターを切断しますが材質がピアノ線のため切断にニッパーや糸鋸は使用できませんので今回はヤスリで切り欠きを入れて折り取りました。

Mouting Plate(PL-9)を取り付けたポイントマシン. Mouting Plateとマシンの取り付け方法はポイントマシンを分岐器に取り付ける方法と同一です.

分岐器以外の線路は篠原(IMON)製の#83フレキシブルレールを使用することとしました。英国PECO社でもフレキシブルレールは製品化されていますが、今回はより入手しやすい国内製を使用することにしました。ただ、実際にフレキシブルレールを入手しPECO製の分岐器と比較してみると両者でレールの断面形状と軌間がわずかにに異なっていることがわかりました。またレールの色がPECO製の方が少し黄色味が勝っています。しかし正しく取り付ければ走行性に問題はなく、色もレール側面を塗装すれば目立たなくなりますのでShinohara製をそのまま使用することとしました。PECO製のフレキシブルレールの実物に詳細は確認していませんが、気になる方はPECO製のフレキシブルレールを使用した方が良いかもわかりません。ベースボードへの取り付けはまず分岐器の位置を決めて取り付けていきます。ベースボードの線路の中心線を罫書いたら分岐器を#70用のスパイクで固定します。過去の雑誌の記事を見ると線路の固定にスパイクを使用すると振動がベースボードに伝わるため騒音が大きくなるというような記事があったような記憶がありますが、今まで製作したレイアウトではスパイクの有無は騒音にはあまり影響はないのではないかと思います。線路の取付に際しては、今回は機関区のレイアウトであり、バラストの厚さはそれほど厚くする必要がないので線路はベースボードの直接取り付けています。この構成は故なかお・ゆたか氏のレイアウトセクションと同一です。なお、分岐器のポイントレール部分(稼働部)には十分にバラストを散布できないためベースボードの表面が露出する可能性がありますので、分岐器のポイントレールの部分には分岐器の取り付け前にベースボードにグレーの塗料を塗っておきました。なお、レール側面と枕木の塗装はこれまで製作したレイアウトと同様ベースボードへの固定後に行うことにしましたので事前にレールの塗装はせずそのまま取り付けます。

分岐器の固定が終了したらその他の部分の線路を敷設しますが、Shinohara製の線路の枕木間隔は約6.5㎜であり、この感覚はこれは蒸気機関車が活躍していた頃の機関区の枕木間隔と比較すると小さすぎます(単位長さあたりの枕木の本数がが多すぎます)。これはこのレールが設計された時代がまだ日本の鉄道模型業界は米国への輸出が主体である頃でしたので米国のレールを意識して設計されたためではないかと思われます。国鉄時代の線路等級の規格では亜幹線の枕木間隔は8〜9㎜で機関区等の側線ではさらに広い感じがします。それでもあまり減らしすぎると分岐器部分との枕木本数の差が大きくなりますので今回は枕木間隔を8㎜としました。雑誌に掲載されている・故なかお・ゆたか私のレイアウトセクションや故・荒崎良徳氏製作の雲龍時鉄道祖山線の記事には市販のフレキシブルレールの枕木本数を2割減らすとよいという記載がありますが、6.5ミリのピッチを8ミリに拡大すると削減本数はこれらの記事に記されたように全体本数のほぼ2割減となります。実際に枕木を減らした線路を敷設中の写真が下の写真です。写真からもわかるようにPECO社の分岐器は米国仕様のためか枕木本数が多いため、下の写真を見ると分岐器部分とそうではない部分の枕木の本数の差がかなり目立ってしっまっています。枕木の本数を減らしたことにより分機器以外の部分では枕木を減らす前より実感的になったと感じますが、このような角度から見ると枕木の本数をもう少し増やしても良かったという気もしましたが、バラストを散布するとあまり目立たなくなることを期待してこのままとしてあります。

なお、Shinohara製の分岐器は写真で見た限りではなぜかポイントレールからリードレールの部分の枕木ピッチがフレキシブルレールの枕木ピッチより広い印象もあるのでShinohara製の分岐器を使用した場合はこの差は目立たなくなるかもわかりません。ただし非選択式の分岐器はありません。フレキシブルレールはもう少し日本の線路の印象に近いレールの製品化をと言いたい気もするのですが、16番ゲージの場合、そもそも軌間がスケールどおりではありませんのでその制約のなかで万人が「実感的」と感ずる線路を製品化して製品化するのはなかなか難しいかも分かりません。故なかお・ゆたか氏や故 荒崎良徳氏のイアウトが製作されたときにはShinohara製のレールはCode100とCode70の2種類でしたが、当時はよりスケールに近いCode70レールは軌間の広さが強調されるため使用する時は注意が必要きということが言われていました。レールの太さはCode70の方が実物に近いのですが模型で「実感的」と感じるためにはやはり全体的なバランスが重要なようです。私は鉄道模型を始めた当時から16番ゲージの所謂「ガニ股」は言われてみると違和感はありましたが鉄道模型は「模型の世界」であるのであまりこだわる必要はないと考えていました。一方、その後外国型の模型を始め、外国型の車両の写真や実物を「模型で再現する」という観点で鑑賞する機会が増えましたが、正面から見た写真を比較すると、外国型車両の模型がレールも含めて写真や実物のイメージを再現している印象があるのに対し、16番ゲージの日本型の模型はそうとも言えないということに改めて気づきました。ただ、それでも模型では下回りの質感の再現には限界があるため、そこにあまりこだわる必要はないと考えています。
話をベースボードへの線路の固定に戻しますと、フレキシブルレールも分岐器と同様、Code70用のスパイクで固定します。ただ、今回は枕木の本数を減らしたため減らす前とは異なり枕木は隣接する枕木と繋がっていません。そのため上の写真のように取り付け時には枕木の間隔とレールに対する直角度はバラバラですので取り付け時は下の写真のようにレールに枕木間隔をマーキングしておき、まずスパイクによる固定用の穴が空いている枕木の位置とレールに対する直角度を調整してスパイクで固定したした後、それ以外の枕木間隔と直角度を1本ずつ手で調整しています。調整後の枕木はレールにもベースボードにも固定されていない状態ですので手で触れれば動いてしまいますが、最終的にはバラスト散布により固定できると考え、そのままにしておくこととしました。

線路を固定し、フィーダーを取り付けた直後のフレキシブルレール.枕木どおしは つながっていませんので枕木の間隔が乱れています.
“レイアウトセクションの製作:蒸気機関車が活躍していた時代の機関区(4) -ベースボードの製作と線路の敷設-” の続きを読む

レイアウトセクションの製作:蒸気機関車が活躍していた時代の機関区(3)

今回は機関区の各種設備をレイアウト上のどこに配置するについて検討した結果を紹介します。最初は燃料の補給等、機関区にある蒸気機関車を運転するために必要な設備についての検討です。機関区の設備にはまず蒸気機関車のエネルギー源を機関車に補給するための設備として
1)石炭補給設備
2)給水塔(水を貯蔵するタンク)
3)給水栓(給水スポート)
があります。また、空転防止用の砂を機関車の補給するための
4)砂補給設備
が必要です。
さらに、機関車から出る石炭の燃え殻を排出するための設備として
5)アッシュピット
が必要になります。
前回線路配置を検討したときに説明したように、今回はこれらの設備は下図の右上の”引上線”に設けることになります。

このレイアウトセクションに出入する蒸機は私が製作したC 62、C 57、D51等ですが、C62は別格としてもそれ以外の機体が配置されている機関区も主に幹線、亜幹線と呼ばれる路線の比較的規模の大きな機関区です。そのような機関区では複数の蒸機機関車に対して機関車を走行させるためには複数の機関車に対してこれらの設備を使用した作業を流れ作業的に行う必要があり、上記の設備を備えた”整備エリア”は複数箇所に設置されていることが多く、どの整備エリアに向かうかをターンテーブルの停止位置で振り分けられるような例も存在します。このような機関区では給炭設備は線路上に設置された櫓の上に設置した石炭ホッパーからその下に停車した機関車のテンダーに直接重力で落下させる方式が多く、また給水も高い位置に設置されている給水タンクから重力を利用して各線の給水地点に振り分けられ線路脇に設置された給水栓(スポート)からテンダーに供給されます。現在でも蒸気機関車は各地で保存されていますが、このような設備を備えたの機関区は写真や映像以外では見ることはできません。

高崎第一機関区で撮影した八高線のさよなら列車を牽引するD51+C58の出区風景. 後方に石炭台、給水スポートと給砂塔, 手前右側に給水塔が確認できます.

しかし今回は整備エリアの線路は単線で長さも短く、スペース上もストラクチャーの大きさのバランスからいってもこのような大規模な設備を設けるのは現実的(実感的)ではありません。そこで、このレイアウトでは石炭補給設備は石炭を”手動”でテンダーに積載する給炭台、給水は給水タンクに設置されたスポートでタンクから直接テンダーに給水する方式の給水タンクとすることとしました。一方空転防止用の砂は機関区の規模に関わらず通常線路脇に設置された櫓の上に設置されたホッパーから砂箱に重力で供給されるようです。この給砂塔は実物でも複線タイプと単線タイプの標準的なタイプがあるようですので今回は単線タイプを線路脇に設置することとしました。なお、この給砂塔はその近くに砂を加熱して乾燥させる設備があり、その建物が給砂塔の近傍に配置されています。砂は重力で砂箱から動輪近傍に落下させますので砂の乾燥は必須のようで欧州の建造物キットではこの給砂塔は”Sanding Tower Plant”という名称で砂乾燥用の建造物とセットで発売しているメーカーもあります。機関区の設備の中でこの給砂塔はあまり話題に上ることがなく、私も蒸気機関車が活躍していた時代、機関区を訪れた際に意識して給砂塔を眺めた記憶はないのですが、上の高崎第一機関区の写真でもその存在は確認できますし機芸出版社発行の”シーナリー・ストラクチャーガイド”の表紙には給砂塔の前に停車するC58の写真が掲載されています。

アッシュピットは整備エリアの近傍にあるようですが、その他の場所にも設置されている例もあるようです。一方、今回レイアウトに設置しようとするするこれらの設備の規模を考えるとこのレイアウトセクションは機関区というよりはローカル線の機関支区のような雰囲気が強くなります、ただ、私は模型の世界ではこのセクションは「機関区」で良いと考えています。このセクションのオマージュ作品である”蒸気機関車のいる風景”でも機関庫は単線機関庫ですが、雑誌でそこにC62が停車している写真を見ても殆ど違和感がありません。思えば小学生の頃鉄道模型を始めた当時、畳のうえに引いた線路に顔を近づけて列車の通過を眺めて楽しんでいたものですがその時には本を積み上げて作ったトンネルが実物のトンネルに、線路脇に置いた筆箱の蓋がプラットホームに見えていたことを思い出します。そこまで極端ではないにせよ最近の雑誌の記事を読んでいると、実物の風景を模型でいかに細密に再現するかが鉄道模型の昨今のトレンドになっているような気がします。ただ、少なくとも私はあまり細かいところには拘らずもう少しおおらかに「模型の国」を楽しみたいと思っています。一方、海外のDCC制御の蒸機はサウンドデコーダーに給炭音、給水音、給砂音や機関車の火格子を振動させて灰落としを行う際のサウンドが実装されています。将来日本でもDCC制御が普及し、蒸機のサウンドデコーダーにこのようなサウンドが実装されれば機関車からこれらのサウンドを発生させて楽しむことが可能です。

Märklin製BR65(#39651)ではf24-f27が機関区の作業時のサウンドに割り当てられています.

話が少し脱線しまったので話をレイアウト設備の配置の話に戻します。今回これらの設備は全て一本の線路上の比較的狭い範囲に設けますので検討するのはその配置(並べ方と各設備間の間隔)になります。私はこれらの設備が実物では通常どのような位置関係で配置されているかの知識はないのですが、限られたスペースの中、実物を忠実に再現する必要もないと思いましたので今回の配置の条件は機関車が引き上げ線に先頭から入線してもバックで入線しても各設備にアクセスできるように各設備の位置を決めました。線路の長さが限られているため一部の設備へのアクセス時に機関車が分岐器上に存在してしまう場合もありますが、それはやむなしと判断しています。なお、アッシュピットはどのような考え方により配置が決められているかは不明でしたので、機関車がどちら向きに進入しても火格子がアッシュピット上に到達できるという条件で線路終端に近い位置にアッシュピットを配置しました。また、アッシュピットは機関区内に複数存在し、中には機関庫近傍に設けられている例もあるようですので機関庫近傍にも設けてあります。また、今回製作するレイアウトセクションは蒸気機関車の晩年(Transition Era)を再現したレイアウトですのでレイアウトに変化をつけるため整備エリアと対向している留置線の片方には気動車の洗浄台と燃料補給設備を設けることとしました。これらの検討結果に基づいて決めた設備の概略位置を下図示します。なお、機関庫内のピットは庫内に入線した際、機関車の動輪部分がピット上にくるように停止可能であることを条件に位置を決定してあります。

これらの設備には石炭台には石炭置場、給水塔にはポンプ小屋、給砂塔には砂乾燥設備と砂置場、アッシュピットには灰置場等の付帯設備が必要となりますが、これらは実際に線路を敷設後に現物合わせで位置を決めることとしました。この他、車両の運転には直接関係ない設備(建物)としては機関区事務所、乗務員控室、風呂場、トイレ、線路班詰所、資材置き場、倉庫等がありますが、これらはベースの奥側と手前側の空きスペースに分散して配置することとしますが、こちらの大きさや位置は線路敷設後に決めることとし、ここまで決めたところでベースの製作を開始しました。次回はベースの製作から線路を敷設するまでの製作の過程を紹介したいと考えております。
最後までお読みいただきありがとうございました。